The crystal structure of streptavidin with biotin bound was first solved in 1989 by Hendrickson et al.and as of May 2009, there are 134 structures deposited in the Protein Data Bank. The N and C termini of the 159 residue full-length protein are processed to give a shorter ‘core’ streptavidin, usually composed of residues 13 - 139; removal of the N and C termini is necessary for the high biotin-binding affinity. The secondary structure of a streptavidin monomer is composed of eight antiparallel β-strands, which fold to give an antiparallel beta barrel tertiary structure. A biotin binding-site is located at one end of each β-barrel. Four identical streptavidin monomers (i.e. four identical β-barrels) associate to give streptavidin’s tetrameric quaternary structure. The biotin binding-site in each barrel consists of residues from the interior of the barrel, together with a conserved Trp120 from neighbouring subunit. In this way, each subunit contributes to the binding site on the neighbouring subunit, and so the tetramer can also be considered a dimer of functional dimers.
No comments:
Post a Comment